Intermediate Field
Twin prime seems to be related to Galois theory. Galois described field extension and intermediate field. F=coefficient, K=field extension, M=intermediate field. G=Galois group. Therefore F⊂M⊂K G(K/M) G(K/F) ∴ G(K/M)⊂G(K/F) There is cubic equation. x^3+ax+b=(x-α)(x-β)(x-γ)=0 α+β+γ=0, αβ+βγ+αγ=a, αβγ=-b G e f1 f2 g1 g2 g3 α α β γ β α γ β β γ α α γ β γ γ α β γ β α e⊂H⊂G H1=(e,g1) H2=(e,g2) H3=(e,g3) H=(e,f1,f2) H e f1 f2 α α β γ β β γ α γ γ α β I define F⊂M⊂K and G(K/M)⊂G(K/F) Therefore, G=F and H=M. K⊂M⊂F This is upside-down. ∴ K(G(M))=M, G(K(H))=H