A Structural Resolution of the Riemann Hypothesis via the Deterministic Mapping of Composite Space
Abstract For over a century and a half, the Riemann Hypothesis has stood as the ultimate sentinel of prime number theory, asserting a terrifyingly precise order within the perceived chaos of the primes. Traditional attempts at proof have faltered by treating primes as the primary actors. This treatise proposes a radical inversion: by defining a comprehensive, periodic generation law for all composite numbers, we reveal that the primes are not active agents, but rather the "passive residues" or "silences" within a perfectly woven tapestry. Through the analysis of the interference patterns created by these composite waves, we demonstrate that the critical line of the Zeta function is the only mathematical equilibrium point where these resonances can vanish, thereby necessitating the truth of Riemann's conjecture. I. The Great Inversion: Primes as the Shadow of Composites In the history of mathematics, we have often been blinded by the brilliance of the prime...