2013年12月15日日曜日

Intermediate Field

Twin prime seems to be related to Galois theory.

Galois described field extension and intermediate field.
F=coefficient, K=field extension, M=intermediate field. G=Galois group.

Therefore

F⊂M⊂K



G(K/M)



G(K/F)



G(K/M)⊂G(K/F)


There is cubic equation.
x^3+ax+b=(x-α)(x-β)(x-γ)=0
α+β+γ=0, αβ+βγ+αγ=a, αβγ=-b



G

e

f1

f2

g1

g2

g3

α

α

β

γ

β

α

γ

β

β

γ

α

α

γ

β

γ

γ

α

β

γ

β

α


e⊂H⊂G



H1=(e,g1)
H2=(e,g2)
H3=(e,g3)
H=(e,f1,f2)



H

e

f1

f2

α

α

β

γ

β

β

γ

α

γ

γ

α

β




I define

F⊂M⊂K

and

G(K/M)⊂G(K/F)


Therefore, G=F and H=M.



K⊂M⊂F


This is upside-down.


K(G(M))=M, G(K(H))=H


2013年12月8日日曜日

Homomorphic

I describe symmetry which is based on Galois theory.
I think that it must be related to prime numbers.

Quadratic equation is like a mirror. There is the formula.











f(x)=0 have two solutions, α and β.


∴α+β=-a

As you know, f(α)=f(β)=0.

If f(α)=β and f(β)=α, f(f(α))=α and f(β)=α.

I define α+β=-a.

Therefore

f(α+β)=f(-a)
f(α)+f(β)=β+α=-a
β+f(β)=-a
∴f(β)=-a-β=α+β-β=α.

There is symmetry.