The empirical method of Maurey
It is hard to define boundary mathematically. Zeta function is well known . ζ(s)=0 You need to fill all spaces for integration. A⊂R^d x is the convex hull of A. When λn, n>d+1. Then, n-1 go to 0. x2-x1=0.00000000000000000009. μ is the vector. x1 x2 ・・・・ xn λ1(0.9) λ11(0.00000000009) λ2(0.09) λ12(0.000000000009) λ3(0.009) λ13(0.0000000000009) λ4(0.0009) λ14(0.00000000000009) λ5(0.00009) λ15(0.000000000000009) λ6(0.000009) λ16(0.0000000000000009) λ7(0.0000009) λ17(0.00000000000000009) ...