p is a prime number and {a} can't be divided by p.
You use the strong induction to prove Fermat's little theorem.
∴
This is the 7th row of Pascal’s triangle.
Odd numbers are 1, and even numbers are 0.
This is fractal.
i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
p | 1 | 7 | 21 | 35 | 35 | 21 | 7 | 1 |
(p,i)≡0 mod p
(i≠0,7)
For example, (7,2)=7!/2!(7-2)!=5040/240=21
p!=p(p-1)!
∴
1^p≡1 mod p
This is apparent.
Therefore
2^p=(1+1)^p=1+(p,1)+(p,2)+・・・+(p,p-1)+1≡1+0+0+0+・・・+1=2 mod p
3^p=(1+2)^p=1+2(p,1)+2^2(p,2)+・・・+2^(p-1)(p,p-1)+2^p≡1+0+0+0+・・・+2=3 mod p
4^p=(1+3)^p=1+3(p,1)+3^2(p,2)+・・・+3^(p-1)(p,p-1)+3^p≡1+0+0+0+・・・+3=4 mod p
You can expand it because of Pascal’s triangle which is the binomial theorem.
(n,i)=n!/i!(n-i)!
Then you define a^(p-1).
5^16≡1 mod 17
This is also clear, so you can prove the strong induction.
0 件のコメント:
コメントを投稿